Evolution of Recurrent Neural Networks to Control Autonomous Life Agents
نویسندگان
چکیده
.............................................................................................................................2 ACKNOWLEDGEMENTS......................................................................................................3 TABLE OF CONTENTS..........................................................................................................4 CHAPTER 1: INTRODUCTION..............................................................................................6 1.1. GENERAL DESCRIPTION.............................................................................................6 1.2. PREVIOUS WORK .........................................................................................................6 1.3. RESEARCH OBJECTIVE AND SPECIFICATIONS ......................................................7 CHAPTER 2: BACKGROUND ...............................................................................................8 2.1. LITERATURE REVIEW .................................................................................................8 2.1.1. General Review .........................................................................................................8 2.1.2. Evolving RNN Parameters.........................................................................................8 2.1.3. Evolving RNN Weights .............................................................................................8 2.1.4. Evolving RNN Topology...........................................................................................9 2.1.5. Evolving Complete RNN...........................................................................................9 2.2. TECHNICAL REVIEW...................................................................................................9 2.2.1. Neural Networks........................................................................................................9 2.2.2. Genetic Algorithms..................................................................................................10 CHAPTER 3: APPROACH ...................................................................................................11 3.1. AGENT STRUCTURE ..................................................................................................12 3.2. GENOME STRUCTURE...............................................................................................13 3.3. POPULATION...............................................................................................................13 3.4. WORLD STRUCTURE .................................................................................................13 3.5. GENETIC ENGINE.......................................................................................................14 CHAPTER 4: EXPERIMENTAL RESULTS ........................................................................16 4.1. PHASE 1W S.................................................................................................................17 4.2. PHASE 1W R.................................................................................................................20 4.3. PHASE NW R ................................................................................................................22 4.4. PHASE NW R X ............................................................................................................24 CHAPTER 5: CONCLUSION ...............................................................................................27 5.1. WORLD COMPLEXITY...............................................................................................27 5.2. ALA FLEXIBILITY ......................................................................................................27 5.3. TOPOLOGY EVOLUTION...........................................................................................27 5.4. SUMMARY...................................................................................................................27 5.5. FUTURE WORK ...........................................................................................................28 BIBLIOGRAPHY...................................................................................................................29
منابع مشابه
Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملF Ur Mathematik in Den Naturwissenschaften Leipzig Evolving Neural Behaviour Control for Autonomous Robots Evolving Neural Behaviour Control for Autonomous Robots
An evolutionary algorithm for the creation of recurrent network structures is presented. The aim is to develop neural networks controlling the behaviour of miniature robots. Two diierent tasks are solved with this approach. For the rst, the agents are required to move within an environment without colliding with obstacles. In the second task, the agents are required to move towards a light sour...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملAn Artificial Life Approach for the Synthesis of Autonomous Agents
This paper describes an evolutionary process producing dy-namical neural networks used as \brains" for autonomous agents. The main concepts used : genetic algorithms, morphogenesis process, artiicial neural networks and artiicial metabolism, illustrate our conviction that some fundamental principles of nature may help to design processes from which emerge artiicial autonomous agents. The evolut...
متن کاملChapter 13: REMEMBERING HOW TO BEHAVE: RECURRENT NEURAL NETWORKS FOR ADAPTIVE ROBOT BEHAVIOR
The use of artificial neural networks (ANNs) in robots and autonomous agents has during the 1990s become the subject of research in various disciplines, and a number of collections on different aspects of this topic have appeared [Bekey, 1993, Brooks, 1998, Omidvar, 1997, Sharkey, 1997, Ziemke, 1998, Ziemke, 1999]. Roboticists and ANN researchers naturally have an interest in neural robot contr...
متن کامل